The developments in technology and communication networks have enabled the possibility of establishing virtual and remote labs, providing new opportunities for students on campus and at a distance overcoming some of the limitations of hands-on labs. The impact of innovations on students' performance can be analyzed statistically by looking at specific skills or indicators, respectively. This paper addresses the lack of empirical evidence supporting electronics education innovations in three practical teaching methods, namely, hands-on, simulation, and online remote real labs. The paper reports on the application of a methodology that takes into account the interaction between students and teachers at different levels of abstraction to evaluate a DC motor laboratory practice, on 150 students at the Polydisciplinary Faculty of Beni Mellal in Morocco. In this work the students' attitudes towards a specific practical method depend on its usefulness, usability, motivation and quality of understanding; these parameters were measured using a questionnaire that considers the relationship between the student, the teacher and the practical work environment. The data collected in each type of experiment environment were was tabulated and analyzed by statistical methods. The results validate the students' satisfaction towards the environments of practical works and identify some aspects that need to be improved in future works.