2019 IEEE International Conference on Big Data (Big Data) 2019
DOI: 10.1109/bigdata47090.2019.9005459
|View full text |Cite
|
Sign up to set email alerts
|

News Recommender System Considering Temporal Dynamics and News Taxonomy

Abstract: In a news recommender system, a reader's preferences change over time. Some preferences drift quite abruptly (short-term preferences), while others change over a longer period of time (long-term preferences). Although the existing news recommender systems consider the reader's full history, they often ignore the dynamics in the reader's behavior. Thus, they cannot meet the demand of the news readers for their timevarying preferences. In addition, the state-of-the-art news recommendation models are often focuse… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
21
0
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
2

Relationship

3
4

Authors

Journals

citations
Cited by 27 publications
(25 citation statements)
references
References 36 publications
1
21
0
3
Order By: Relevance
“…Matrix factorization can be used to discover the latent features that exhibit in the interactions between two different types of entities (e.g., users and items). In a recent NRS (Raza and Ding 2019), the MF is extended to include the news-related information and to model the temporal dynamics in readers' behaviors. This work introduces a novel predictor to include various temporal effects in the MF model, including time bias, user bias, and item bias.…”
Section: Matrix Factorization (Mf)mentioning
confidence: 99%
“…Matrix factorization can be used to discover the latent features that exhibit in the interactions between two different types of entities (e.g., users and items). In a recent NRS (Raza and Ding 2019), the MF is extended to include the news-related information and to model the temporal dynamics in readers' behaviors. This work introduces a novel predictor to include various temporal effects in the MF model, including time bias, user bias, and item bias.…”
Section: Matrix Factorization (Mf)mentioning
confidence: 99%
“…Accounting for individual-level selectivity constitutes a valuable starting point for diversityaware NRS design, but its influence on news selection is also contingent on a broad range of situational factors (Raza and Ding, 2019;Constantinides and Dowell, 2018). While our goal is not to develop an exhaustive model for all relevant situational moderators, we do want to highlight the ways in which individual reading goals as well as presentational factors can inform personalised diversity nudges.…”
Section: The Moderating Roles Of Situational Factorsmentioning
confidence: 99%
“…Застосування рекомендацій значно спрощує для споживача вирішення проблеми вибору з набору однотипних товарів з схожими характеристиками. Тому рекомендації широко використовуються при онлайн-продажах товарів, перегляді фільмів за допомогою стрімінгових сервісів, пропозиціях туристичних турів, виборі наукових конференцій, огляді новин [1,2].…”
Section: вступunclassified
“…Для підтримки довіри користувача рекомендації доповнюють поясненнями [6], яке має давати відповідь на запитання «чому отримана така рекомендація?» [7][8][9]. Оцінка впливу пояснень на вибір користувачів показала, що користувачі рідше відмовляються від рекомендованого предмета після отримання пояснення [6,10].…”
Section: вступunclassified
See 1 more Smart Citation