1996
DOI: 10.4310/maa.1996.v3.n4.a6
|View full text |Cite
|
Sign up to set email alerts
|

Newton sum rules and monotonicity properties of the zeros of scaled co-recursive associated polynomials

Abstract: ABSTRACT. Let Q n (a;;/3,7,c) be the polynomials of degree n which satisfy the recurrence relation: a!n+cQn+i(a;/3,7,c) + a! n+c _iQ n _i(z;/3,7,c) + (Pn+c + {3Sn,o)Qn(x; /?,7,c) = x(l + (7 -l)Sn,0)Qn(a; P, 7> c), Q_l(a;;/3,7,c) = 0, Qo(a;;^,7,c) = 1.In the above, P is real, 7 > 0, a n + c and /3n+c are real sequences with Q: n + C > 0, and 5 ni o is the Kronecker symbol. These polynomials are called scaled co-recursive associated polynomials. The co-recursive associated orthogonal polynomials are obtained fro… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
10
0
1

Year Published

2001
2001
2010
2010

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(11 citation statements)
references
References 27 publications
0
10
0
1
Order By: Relevance
“…H mèjodoc pou ja qrhsimopoi soume gia th melèth thc monotonÐac kai thc kurtìthtac twn riz¸n twn associated q-poluwnÔmwn, eÐnai mia sunarthsiak analutik mèjodoc kai basÐzetai sthn anadromik sqèsh tri¸n ìrwn pou ikanopoioÔn aut ta orjog¸nia polu¸numa kai eis qjh apì touc Ifantis kai Siafarikas sthn [55] gia ta klasik orjog¸nia polu¸numa kai stic [56], [111] gia ta antÐstoiqa associated orjog¸nia polu¸numa. EpÐshc gia ton upologismì twn ajroismtwn Newton twn riz¸n twn associated orjogwnÐwn q-poluwnÔmwn h sunarthsiak analutik mèjodoc pou ja qrhsimopoihjeÐ parousisthke sthn [52] gia ton upologismì twn ajroismtwn Newton twn riz¸n twn scaled co-recursive associated orjogwnÐwn poluwnÔmwn.…”
Section: 3mentioning
confidence: 99%
See 4 more Smart Citations
“…H mèjodoc pou ja qrhsimopoi soume gia th melèth thc monotonÐac kai thc kurtìthtac twn riz¸n twn associated q-poluwnÔmwn, eÐnai mia sunarthsiak analutik mèjodoc kai basÐzetai sthn anadromik sqèsh tri¸n ìrwn pou ikanopoioÔn aut ta orjog¸nia polu¸numa kai eis qjh apì touc Ifantis kai Siafarikas sthn [55] gia ta klasik orjog¸nia polu¸numa kai stic [56], [111] gia ta antÐstoiqa associated orjog¸nia polu¸numa. EpÐshc gia ton upologismì twn ajroismtwn Newton twn riz¸n twn associated orjogwnÐwn q-poluwnÔmwn h sunarthsiak analutik mèjodoc pou ja qrhsimopoihjeÐ parousisthke sthn [52] gia ton upologismì twn ajroismtwn Newton twn riz¸n twn scaled co-recursive associated orjogwnÐwn poluwnÔmwn.…”
Section: 3mentioning
confidence: 99%
“…, brÐskoume wc eidikèc peript¸seic, ta ajroÐsmata Newton twn riz¸n twn associated Laguerre, twn associated Charlier, twn associated Ultraspherical kai twn associated Meixner poluwnÔmwn pou èqoun brejeÐ prìsfata stic erga-sÐec [3,41,52,68,92,93].…”
Section: 4mentioning
confidence: 99%
See 3 more Smart Citations