International audienceWe study the viscous version of the planar Savart sheet problem, using an impacting liquid jet up to 300 times more viscous than water. Two surprising observations are made, contrasting with the traditional case introduced by Savart where viscosity plays no role. First, if the radius of a viscous sheet is typically reduced compared to the case of water for a given jet radius and impacting velocity, the smooth-flapping transition is delayed, allowing for smooth sheet radii substantially bigger than those permitted with water at large impacting Weber number. Second, the drop size distribution is bimodal, with a substantial fraction of the drops having a very small, well-defined diameter. We understand these two facts in terms of an additional model experiment, and simple physical arguments