Till now, Ionic liquid-stabilized metal nanoparticles were investigated as catalytic materials, mostly in the hydrogenation of simple substrates like olefins or arenes. The adjustable hydrogenation products of aromatic compounds, including quinoline and relevant compounds, aromatic nitro compounds, aromatic ketones as well as aromatic aldehydes, are always of special interest, since they provide more choices for additional derivatization. Iridium nanoparticles (Ir NPs) were synthesized by the H 2 reduction in imidazolium ionic liquid. TEM indicated that the Ir NPs is worm-like shape with the diameter around 12.2 nm and IR confirmed the modification of phosphine-functionalized ionic liquids (PFILs) to the Ir NPs. With the variation of the modifier, solvent and reaction temperature, substrate like quinoline and relevant compounds, aromatic nitro compounds, aromatic ketones as well as aromatic aldehydes could be hydrogenated by Ir NPs with interesting adjustable catalytic activity and chemoselectivity.Ir NPs modified by PFILs are simple and efficient catalysts in challenging chemoselective hydrogenation of quinoline and relevant compounds, aromatic nitro compounds, aromatic ketones as well as aromatic aldehydes. The activity and chemoselectivity of the Ir NPs could be obviously impacted or adjusted by altering the modifier, solvent and reaction temperature.