Summary
The study aims to analyze catalytic tar destruction, evaluate the activity of the Ni‐based catalyst supported by waste iron slag, and obtain clean pyrolysis syngas. The effects of different nickel loadings, catalytic temperatures, and catalyst calcination temperatures on volatile were investigated in order to determine the optimal process condition. The analysis results showed that the iron slag Ni‐based catalyst had a relatively low specific surface area. However, it showed an excellent resistance performance to the coke deposition and displayed the high tar removal ability. Moreover, the tar conversion and the yield of syngas were significantly affected by nickel loadings. When the nickel loading reached 3%, the tar dew point was decreased by nearly 100 °C and the tar conversion reached 94.84%. The favorable reaction temperature was about 800 °C based on the consideration of energy consumption and the catalytic performance. Calcination temperature affected tar yield and syngas yield. The application of iron slag in nickel catalyst realized the reutilization of waste materials, indicating significant practical values. Copyright © 2017 John Wiley & Sons, Ltd.