A common hypothesis for the rich biodiversity found in mountains is uplift-driven diversification-that orogeny creates conditions favoring rapid in situ speciation of resident lineages. We tested this hypothesis in the context of the Qinghai-Tibetan Plateau (QTP) and adjoining mountain ranges, using the phylogenetic and geographic histories of multiple groups of plants to infer the tempo (rate) and mode (colonization versus in situ diversification) of biotic assembly through time and across regions. We focused on the Hengduan Mountains region, which in comparison with the QTP and Himalayas was uplifted more recently (since the late Miocene) and is smaller in area and richer in species. Time-calibrated phylogenetic analyses show that about 8 million y ago the rate of in situ diversification increased in the Hengduan Mountains, significantly exceeding that in the geologically older QTP and Himalayas. By contrast, in the QTP and Himalayas during the same period the rate of in situ diversification remained relatively flat, with colonization dominating lineage accumulation. The Hengduan Mountains flora was thus assembled disproportionately by recent in situ diversification, temporally congruent with independent estimates of orogeny. This study shows quantitative evidence for uplift-driven diversification in this region, and more generally, tests the hypothesis by comparing the rate and mode of biotic assembly jointly across time and space. It thus complements the more prevalent method of examining endemic radiations individually and could be used as a template to augment such studies in other biodiversity hotspots.biogeography | vascular plants | molecular clocks | dispersal | speciation C entral to understanding global patterns of biodiversity are considerations of biotic assembly: For a given region, when and how did resident species accumulate? Of primary interest is tempo (the rate of accumulation) and mode (the process, whether by colonization via dispersal or in situ lineage diversification). We wish to know how and why these vary in time and space.For mountains, well-known for harboring a disproportionate fraction of terrestrial species, a common hypothesis is that of uplift-driven diversification-that orogeny creates conditions favoring in situ speciation of resident lineages (1-6). Among global biodiversity hotspots, the mountain ranges surrounding the Qinghai-Tibetan Plateau (QTP) are unusual and enigmatic: They harbor one of the world's richest temperate floras, and (unlike other hotspots) they are neither tropical nor Mediterranean in climate. Moreover, despite increasing interest from biogeographers, their biotic assembly remains poorly understood (3, 4, 7). The mountains form three distinct hotspots of biodiversity that respectively lie to the west, south, and east of the QTP's central high desert: the Central Asian mountains (Altai and Tianshan ranges), the Himalayas, and the Hengduan Mountains region (4) (Fig. 1). Of these, the richest in plant diversity is the Hengduan Mountains, with a vascular flor...