Abstract-Process and material characterization of the crystallization of amorphous silicon by metal-induced crystallization (MIC) and metal-induced lateral crystallization (MILC) using evaporated Ni has been performed. An activation energy of about 2 eV has been obtained for the MILC rate. The Ni content in the MILC area is about 0.02 atomic %, significantly higher than the solid solubility limit of Ni in crystalline Si at the crystallization temperature of 500 C. A prominent Ni peak has been detected at the MILC front using scanning secondary ion mass spectrometry. The MIC/MILC interface has been determined to be highly defective, comprising a continuous grain boundary with high Ni concentration. The effects of the relative locations of this interface and the metallurgical junctions on TFT performance have been studied.Index Terms-Grain boundary, MILC, nickel, thin-film transistor.