Abstract-It remains undetermined whether continuous endothelial nitric oxide (NO) overexpression exerts angiogenic action. We surgically induced hindlimb ischemia in transgenic mice overexpressing endothelial NO synthase in the endothelium (eNOS-Tg) and studied neocapillary formation, ischemia-induced vascular endothelial growth factor (VEGF) expression, cGMP accumulation, and Akt/PKB signaling. Laser Doppler imaging revealed a markedly increased recovery of blood perfusion in ischemic limbs of eNOS-Tg mice (44% increase) compared with that in wild-type mice. Angiography showed a marked increase in basal and ischemia-induced collateral vessel formation in eNOS-Tg mice. Basal capillary densities and tissue cGMP levels were increased in eNOS-Tg mice (1.8-fold and 1.6-fold versus wild-type mice, respectively). Ischemia-induced neocapillary formation and cGMP accumulation were markedly increased in eNOS-Tg mice (3.6-fold and 4.1-fold versus preischemia levels, respectively), whereas those in wild-type mice were much less (1.8-fold and 1.5-fold, respectively). Basal and time-dependent VEGF expression in ischemic muscles did not differ between eNOS-Tg and wild-type mice. Basal and VEGF-mediated Akt phosphorylation in aortas was similar between eNOS-Tg and wild-type mice. Aortic basal eNOS expression was increased 3.3-fold, and VEGF-mediated eNOS phosphorylation was markedly induced in aortas of eNOS-Tg compared with preischemia levels (4.2-fold), whereas much smaller changes were observed in wild-type mice (1.8-fold increase). Our study demonstrates that overexpression of eNOS protein causes a marked increase in neocapillary formation in response to tissue ischemia without affecting ischemia-induced VEGF expression or VEGF-mediated Akt phosphorylation.