Chemical compounds in liquid hydrocarbon fuels that contain fivemembered pyrrole (Py) rings readily react with oxygen from air and polymerize through a process known as autoxidation. Autoxidation degrades the quality of fuel and leads to the formation of unwanted gum deposits in fuel storage vessels and engine components. Recent work has found that the rate of formation of these gum deposits is affected by material surfaces exposed to the fuel, but the origins of these effects are not yet understood. In this work, atomic layer deposition (ALD) is employed to grow aluminum oxide, zinc oxide, titanium dioxide, and manganese oxide films on silicon substrates to control material surface chemistry and study Py adsorption and gum nucleation on these surfaces. Quartz crystal microbalance (QCM) studies of gas-phase Py adsorption indicate 1.5−2.8 kcal/mol exergonic adsorption of Lewis basic Py onto Lewis acidic surface sites. More favorable Py adsorption onto Lewis acidic surfaces correlates with faster polypyrrole (PPy) film nucleation in vapor phase oxidative molecular deposition (oMLD) polymerization studies. Liquid-phase studies of Py autoxidation reveal primarily particulate formation, indicating a homogeneous PPy propagation step rather than a completely surface-based polymerization mechanism. The amount of PPy particulate formation is positively correlated with more acidic surfaces (lower pH-PZC values), indicating that the rate-limiting step for Py autoxidation involves Lewis acidic surface sites. These studies help to establish new mechanistic insights into the role of surface chemistry in the autoxidation of pyrrolic species. We apply this knowledge to demonstrate a polymer coating formed by vapor phase polymer deposition that slows autoxidation by 2 orders of magnitude.