Global environmental change is rapidly altering the dynamics of terrestrial vegetation, with consequences for the functioning of the Earth system and provision of ecosystem services 1,2 . Yet how global vegetation is responding to the changing environment is not well established. Here we use three long-term satellite leaf area index (LAI) records and ten global ecosystem models to investigate four key drivers of LAI trends during 1982-2009. We show a persistent and widespread increase of growing season integrated LAI (greening) over 25% to 50% of the global vegetated area, whereas less than 4% of the globe shows decreasing LAI (browning). Factorial simulations with multiple global ecosystem models suggest that CO 2 fertilization e ects explain 70% of the observed greening trend, followed by nitrogen deposition (9%), climate change (8%) and land cover change (LCC) (4%). CO 2 fertilization e ects explain most of the greening trends in the tropics, whereas climate change resulted in greening of the high latitudes and the Tibetan Plateau. LCC contributed most to the regional greening observed in southeast China and the eastern United States. The regional e ects of unexplained factors suggest that the next generation of ecosystem models will need to explore the impacts of forest demography, di erences in regional management intensities for cropland and pastures, and other emerging productivity constraints such as phosphorus availability.Changes in vegetation greenness have been reported at regional and continental scales on the basis of forest inventory and satellite measurements 3-8 . Long-term changes in vegetation greenness are driven by multiple interacting biogeochemical drivers and land-use effects 9 . Biogeochemical drivers include the fertilization effects of elevated atmospheric CO 2 concentration (eCO 2 ), regional climate change (temperature, precipitation and radiation), and varying rates of nitrogen deposition. Land-use-related drivers involve changes in land cover and in land management intensity, including fertilization, irrigation, forestry and grazing 10 . None of these driving factors can be considered in isolation, given their strong interactions with one another. Previously, a few studies had investigated the drivers of global greenness trends 6,7,11 , with a limited number of models and satellite observations, which prevented an appropriate quantification of uncertainties 12 .Here, we investigate trends of leaf area index (LAI) and their drivers for the period 1982 to 2009 using three remotely sensed data sets (GIMMS3g, GLASS and GLOMAP) and outputs from ten ecosystem models run at global extent (see Supplementary Information). We use the growing season integrated leaf area index (hereafter, LAI; Methods) as the variable of our study. We first analyse global and regional LAI trends for the study period and differences between the three data sets. Using modelling results, we then quantify the contributions of CO 2 fertilization, climatic factors, nitrogen deposition and LCC to the observed trends...