Nitrogen-doped carbon nanotubes (N-CNTs) were synthesized by pyrolysis of (4-{[(pyridine-4-yl)methylidene]amino}phenyl)ferrocene in a solution of either acetonitrile or toluene as carbon source. This was achieved by testing three different growth temperatures (800, 850, and 900°C), and the 850°C was found to be the most favourable condition for N-CNT growth. At the lower temperature of 800°C, amorphous carbon was mainly formed while at the higher temperature of 900°C, the yield of carbon spheres (CSs) increased. Apart from the variation in temperature, the formation of other shaped carbon nanomaterials (SCNMs) was found to be carbon source dependent. Acetonitrile was found to produce mainly N-CNTs with “bamboo” morphology while toluene formed a mixture of pristine CNTs and N-CNTs in the ratio of 1 : 1. N-CNTs, and other SCNMs synthesized were characterized by means of TEM, SEM, Raman spectroscopy, TGA, and elemental analysis.