In order to analyze the N mineralization process under shifting cultivation in northern Thailand, labile pools of soil organic matter were studied, which were considered to be the factors contributing to the N mineralization process.Organic C, (organic + NH. +)-N, and hexose-C were extracted from fresh soils in the surface 0-5 cm layers with a 0.5 M K 2 SO. solution at 110°C in an autoclave (fraction A) or at room temperature with a reciprocal shaker (fraction B), and analyzed as labile pools of organic matter. In the traditional shifting cultivation system, the content of organic C in fraction A in the fallow fields for 8 to 15 y was 3,710 mg kg-l while that in the fallow fields for 1 y and 3 to 5 y was 2,640 and 2,600 mg kg-l, respectively. A high correlation was observed between the contents of the labile pool in fraction A and total soil organic matter. The ratio of the pool in fraction A to total soil organic matter apparently remained constant through the input-output balance in the pool. The content of the labile pool in fraction B was the highest among the fields cultivated for 1 y after the slash and burn practice and it decreased in the course of the fallow period. The content of organic C was 548 mg kg-l in the fields cultivated for 1 y and 235 mg kg-l in the fallow fields for 8-15 y, respectively. There was a reverse relation between the contents of the pool in fraction B and microbial biomass. Therefore, the origin of the pool in fraction B was attributed to the microbial debris associated mainly with a decrease in the soil moisture content in the dry season. On the other hand, in the relatively intensive cultivation system, there was no significant difference in the contents of the labile pools both in fractions A and B among the land use stages, suggesting that the preservation mechanism of these pools, which was observed in the traditional cultivation system, did not operate well in the intensive system. In alternative farming systems in future, it will be essential to apply organic materials to soils to supply organic matter and to maintain the microbial biomass.