Retaining sufficient anammox bacteria (AnAOB) while keeping the anammoxbased process stable is the focus of the study of anammox technology, especially in a one-stage partial nitritation/anammox (PNA) process. The use of hydroxyapatite (HAP) granules in an anammox-based process is innovative for its potential to improve the nitrogen removal rate and achieve simultaneous removal of phosphorus. In this study, the HAP-based granular sludge was employed using enhancement strategies for an excellent nitrogen removal performance in a onestage PNA process. Compared to those of other granular sludge PNA systems, a remarkable sludge volume index of 7.8 mL/g and an extremely high mixed liquor volatile suspended solids of 15 g/L were achieved under a low hydraulic retention time of 2 h. Consequently, an unprecedented nitrogen removal rate as high as 4.8 kg N/m 3 /d at 25 °C was obtained under a nitrogen loading rate of 6 kg N/m 3 /d. After a long-term operation of 870 days, the enhancement strategies underlying the superior performance of the granular sludge were identified. These findings clearly demonstrate that the enhancement strategies are crucial for the superior operating performance of the PNA process, and they can promote the application of the anammox-based process.