ProblemThe mechanisms controlling abundance and biomass of meiofauna in marine sub-littoral systems are still poorly known. The structure of a meiobenthic community is the product of an intricate network of abiotic factors, which interact with biotic factors like food availability, intra-and interspecific interactions and predation (Giere 1993). In spite of this inherent complexity, the temporal variation of meiobenthic communities in coastal systems might be quite predictable in relation to seasonal variation of primary production (i.e. food availability) and environmental conditions (e.g. temperature and oxygen)
AbstractThe sediments of the Bay of Concepció n and the adjacent shelf underlie one of the most productive upwelling areas in the SE Pacific margin. Reports on factors controlling meiofaunal community structure in these kinds of organic-rich and oxygen-deficient habitats are scarce in the literature. In this study, five sites along a transect from the mid-Bay of Concepció n (27 m) to the outer shelf (120 m) were studied on fives dates (May, August, November 1997, and March and May 1998) in order to assess the dynamic relationships between sedimentary organic matter and metazoan meiofauna. The sampling period coincided with the 1997-1998 El Niño event. Sediment parameters investigated were the redox potential discontinuity depth, photosynthetic pigment concentrations (chlorophyll a and phaeopigments), organic carbon, nitrogen, total lipids, carbohydrates, and proteins. In general, lowest values of meiofauna abundance and biomass were found within the naturally eutrophic Bay of Concepció n and towards the shelf break, while maximum values occurred at intermediate depths. During the whole period, the meiofaunal abundance was negatively correlated with the concentration of most of the biochemical components of organic matter, as well as with the sediment phaeopigment content. However, positive correlations were found with chlorophyll a derived indices and with bottom-water oxygen content. Most of the sediment parameters displayed a seasonal cycle, but towards the beginning of 1998, an effect of the 1997-1998 El Niño was evident. Typical austral-summer (i.e. oxygen-deficient) conditions did not develop, and sedimentary parameters reflected a decreased input of phytodetritus. Along the transect, the magnitude of this effect on meiofauna varied among sites. An overall positive response, in terms of meiofaunal abundance was observed, probably due to the amelioration of low oxygen conditions in the sediment.