Invariant natural killer T cells (iNKT cells) are unique lymphocytes with characteristic features, such as expression of an invariant T cell antigen receptor (TCR) α chain, recognition of glycolipid antigens presented by CD1d molecules, and ability to rapidly produce large amounts of cytokines, including interferon-γ (IFNγ) and interleukin 4 (IL-4) upon TCR stimulation. Many studies have demonstrated that iNKT cells participate in immune response against diverse microbes, including bacteria, fungi, protozoan parasites and viruses. Generally, these cells play protective roles in host defense against infections. However, in some contexts they play pathogenic roles, by inducing or augmenting inflammation. Recent reports show that iNKT cells recognize glycolipid antigens from pathogenic bacteria including Streptococcus pneumoniae, and they contribute to host defense against infection. iNKT cell responses to these microbial glycolipid antigens are highly conserved between rodents and humans, suggesting that iNKT cells are evolutionally conserved because their invariant TCR is useful in detecting certain pathogens. Furthermore, glycolipid-mediated iNKT cell activation during immunization has adjuvant activity, enhancing humoral and cell-mediated responses. Therefore, iNKT cell activation is an attractive target for developing new vaccines for infectious diseases.