The ability of Azotobacter vinelandii
NifIscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. NifIscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, CD and VTMCD, EPR, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5cm−1) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm−1) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound NifIscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ±15 mV at pH 7.8 (versus NHE). L-cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of NifIscA. Fe(III)-bound NifIscA was also shown to a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.