In the vertebrate olfactory system, odor information is represented as a topographic map in the olfactory bulb (OB). However, it remains unknown how this odor map is transferred from the OB to higher olfactory centers. Using genetic labeling techniques in zebrafish, we found that the OB output neurons, mitral cells (MCs), are heterogeneous with respect to transgene expression profiles and spatial distributions. Tracing MC axons at single-cell resolution revealed that (1) individual MCs send axons to multiple target regions in the forebrain; (2) MCs innervating the same glomerulus do not necessarily display the same axon trajectory; (3) MCs innervating distinct glomerular clusters tend to project axons to different, but partly overlapping, target regions; (4) MCs innervating the medial glomerular cluster directly and asymmetrically send axons to the right habenula. We propose that the topographic odor map in the OB is not maintained intact, but reorganized in higher olfactory centers. Moreover, our finding of asymmetric bulbo-habenular projection renders the olfactory system an attractive model for the studies of brain asymmetry and lateralized behaviors.
The biosynthesis of iron-sulfur clusters is a highly regulated process involving several proteins. Among them, so-called scaffold proteins play pivotal roles in both the assembly and delivery of iron-sulfur clusters. Here, we report the identification of two chloroplast-localized NifU-like proteins, AtCnfU-V and AtCnfU-IVb, from Arabidopsis (Arabidopsis thaliana) with high sequence similarity to a cyanobacterial NifU-like protein that was proposed to serve as a molecular scaffold. AtCnfU-V is constitutively expressed in several tissues of Arabidopsis, whereas the expression of AtCnfU-IVb is prominent in the aerial parts. Mutant Arabidopsis lacking AtCnfU-V exhibited a dwarf phenotype with faint pale-green leaves and had drastically impaired photosystem I accumulation. Chloroplasts in the mutants also showed a decrease in both the amount of ferredoxin, a major electron carrier of the stroma that contains a [2Fe-2S] cluster, and in the in vitro activity of iron-sulfur cluster insertion into apo-ferredoxin. When expressed in Escherichia coli cells, AtCnfU-V formed a homodimer carrying a [2Fe-2S]-like cluster, and this cluster could be transferred to apo-ferredoxin in vitro to form holo-ferredoxin. We propose that AtCnfU has an important function as a molecular scaffold for iron-sulfur cluster biosynthesis in chloroplasts and thereby is required for biogenesis of ferredoxin and photosystem I.
In fish, amino acids are food-related important olfactory cues to elicit an attractive response. However, the neural circuit underlying this olfactory behavior is not fully elucidated. In the present study, we applied the Tol2 transposon-mediated gene trap method to dissect the zebrafish olfactory system genetically. Four zebrafish lines (SAGFF27A, SAGFF91B, SAGFF179A, and SAGFF228C) were established in which the modified transcription activator Gal4FF was expressed in distinct subsets of olfactory sensory neurons (OSNs). The OSNs in individual lines projected axons to partially overlapping but mostly different glomeruli in the olfactory bulb (OB). In SAGFF27A, Gal4FF was expressed predominantly in microvillous OSNs innervating the lateral glomerular cluster that corresponded to the amino acid-responsive region in the OB. To clarify the olfactory neural pathway mediating the feeding behavior, we genetically expressed tetanus neurotoxin in the Gal4FF lines to block synaptic transmission in distinct populations of glomeruli and examined their behavioral response to amino acids. The attractive response to amino acids was abolished only in SAGFF27A fish carrying the tetanus neurotoxin transgene. These findings clearly demonstrate the functional significance of the microvillous OSNs innervating the lateral glomerular cluster in the amino acid-mediated feeding behavior of zebrafish. Thus, the integrated approach combining genetic, neuroanatomical, and behavioral methods enables us to elucidate the neural circuit mechanism underlying various olfactory behaviors in adult zebrafish.feeding behavior ͉ Gal4/UAS ͉ neural transmission blockade ͉ olfaction
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.