Anticipation of danger at first elicits panic in animals, but later it helps them to avoid the real threat adaptively. In zebrafish, as fish experience more and more danger, neurons in the ventral habenula (vHb) showed tonic increase in the activity to the presented cue and activated serotonergic neurons in the median raphe (MR). This neuronal activity could represent the expectation of a dangerous outcome and be used for comparison with a real outcome when the fish is learning how to escape from a dangerous to a safer environment. Indeed, inhibiting synaptic transmission from vHb to MR impaired adaptive avoidance learning, while panic behavior induced by classical fear conditioning remained intact. Furthermore, artificially triggering this negative outcome expectation signal by optogenetic stimulation of vHb neurons evoked place avoidance behavior. Thus, vHb-MR circuit is essential for representing the level of expected danger and behavioral programming to adaptively avoid potential hazard.
In fish, amino acids are food-related important olfactory cues to elicit an attractive response. However, the neural circuit underlying this olfactory behavior is not fully elucidated. In the present study, we applied the Tol2 transposon-mediated gene trap method to dissect the zebrafish olfactory system genetically. Four zebrafish lines (SAGFF27A, SAGFF91B, SAGFF179A, and SAGFF228C) were established in which the modified transcription activator Gal4FF was expressed in distinct subsets of olfactory sensory neurons (OSNs). The OSNs in individual lines projected axons to partially overlapping but mostly different glomeruli in the olfactory bulb (OB). In SAGFF27A, Gal4FF was expressed predominantly in microvillous OSNs innervating the lateral glomerular cluster that corresponded to the amino acid-responsive region in the OB. To clarify the olfactory neural pathway mediating the feeding behavior, we genetically expressed tetanus neurotoxin in the Gal4FF lines to block synaptic transmission in distinct populations of glomeruli and examined their behavioral response to amino acids. The attractive response to amino acids was abolished only in SAGFF27A fish carrying the tetanus neurotoxin transgene. These findings clearly demonstrate the functional significance of the microvillous OSNs innervating the lateral glomerular cluster in the amino acid-mediated feeding behavior of zebrafish. Thus, the integrated approach combining genetic, neuroanatomical, and behavioral methods enables us to elucidate the neural circuit mechanism underlying various olfactory behaviors in adult zebrafish.feeding behavior ͉ Gal4/UAS ͉ neural transmission blockade ͉ olfaction
The retinoic acid receptors (RARs) recruit coactivator and corepressor proteins to activate or repress the transcription of target genes depending on the presence of retinoic acid (RA). Despite a detailed molecular understanding of how corepressor complexes function, there is no in vivo evidence to support a necessary function for RAR-mediated repression. Signaling through RARs is required for patterning along the anteroposterior (A-P) axis, particularly in the hindbrain and posterior, although the absence of RA is required for correct anterior patterning. Because RARs and corepressors are present in regions in which RA is absent, we hypothesized that repression mediated through unliganded RARs might be important for anterior patterning. To test this hypothesis, specific reagents were used that either reduce or augment RAR-mediated repression. Derepression of RAR signaling by expressing a dominant-negative corepressor resulted in embryos that exhibited phenotypes similar to those treated by RA. Anterior structures such as forebrain and cement gland were greatly reduced, as was the expression of molecular markers. Enhancement of target gene repression using an RAR inverse agonist resulted in up-regulation of anterior neural markers and expansion of anterior structures. Morpholino antisense oligonucleotide-mediated RAR␣ loss-of-function phenocopied the effects of RA treatment and dominant-negative corepressor expression. Microinjection of wild-type or dominant-negative RAR␣ rescued the morpholino phenotype, confirming that RAR is functioning anteriorly as a transcriptional repressor. Lastly, increasing RAR-mediated repression potentiated head-inducing activity of the growth factor inhibitor cerberus, whereas releasing RAR-mediated repression blocked cerberus from inducing ectopic heads. We conclude that RAR-mediated repression of target genes is critical for head formation. This requirement establishes an important biological role for active repression of target genes by nuclear hormone receptors and illustrates a novel function for RARs during vertebrate development.
Nucleotides released from food sources into environmental water are supposed to act as feeding cues for many fish species. However, it remains unknown how fish can sensitively detect those nucleotides. Here we discover a novel olfactory mechanism for ATP sensing in zebrafish. Upon entering into the nostril, ATP is efficiently converted into adenosine through enzymatic reactions of two ecto-nucleotidases expressed in the olfactory epithelium. Adenosine subsequently activates a small population of olfactory sensory neurons expressing a novel adenosine receptor A2c that is unique to fishes and amphibians. The information is then transmitted to a single glomerulus in the olfactory bulb and further to four regions in higher olfactory centers. These results provide conclusive evidence for a sophisticated enzyme-linked receptor mechanism underlying detection of ATP as a food-derived attractive odorant linking to foraging behavior that is crucial and common to aquatic lower vertebrates.
Pheromones play vital roles for survival and reproduction in various organisms. In many fishes, prostaglandin F2α acts not only as a female reproductive hormone, facilitating ovulation and spawning, but also as a sex pheromone inducing male reproductive behaviors. Here, we unravel the molecular and neural circuit mechanisms underlying the pheromonal action of prostaglandin F2α in zebrafish. Prostaglandin F2α specifically activates two olfactory receptors with different sensitivities and expression in distinct populations of ciliated olfactory sensory neurons. Pheromone information is then transmitted to two ventromedial glomeruli in the olfactory bulb and further to four regions in higher olfactory centers. Mutant male zebrafish deficient in the high-affinity receptor exhibit loss of attractive response to prostaglandin F2α and impairment of courtship behaviors toward female fish. These findings demonstrate the functional significance and activation of selective neural circuitry for the sex pheromone prostaglandin F2α and its cognate olfactory receptor in fish reproductive behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.