Abstract. Nitrogen (N) inputs sustain many different aspects of local soil processes, their services, and their interactions with the broader Earth system. We present a new synthesis for terrestrial N inputs that explicitly considers both rock and atmospheric sources of N. We review evidence for state-factor regulation over biological fixation, deposition, and rock-weathering inputs from local to global scales and in transient vs. steady-state landscapes. Our investigation highlights strong organism and topographic (relief) controls over all three N input pathways, with the anthropogenic factor clearly important in rising N deposition rates. In addition, the climate, parent material, and time factors are shown to influence patterns of fixation and rock-weathering inputs of N in diverse soil systems. Data reanalysis suggests that weathering of N-rich parent material could resolve several known cases of "missing N inputs" in ecosystems, and demonstrates how the inclusion of rock N sources into modern concepts can lead to a richer understanding of spatial and temporal patterns of ecosystem N availability. For example, explicit consideration of rock N inputs into classic pedogenic models (e.g., the Walker and Syers model) yields a fundamentally different expectation from the standard case: weathering of N-rich parent material could enhance N availability and facilitate terrestrial succession in developmentally young sites even in the absence of N-fixing organisms. We conclude that a state-factor framework for N complements our growing understanding multiple-source controls on phosphorus and cation availability in Earth's soil, but with significant exceptions given the lack of an N fixation analogue in all other biogeochemical cycles. Rather, non-symmetrical feedbacks among input pathways in which high N inputs via deposition or rock-weathering sources have the potential to reduce biological fixation rates mark N as fundamentally different from other nutrients. The new synthesis for terrestrial N inputs provides a novel set of research issues and opportunities in the multidisciplinary Earth system sciences, with implications for patterns of N limitation, tectonic controls over biogeochemical cycling, and carbon-nutrient-climate interactions.