The solution of the human phonation problem applying computational mechanics is covered by several research branches, such as Computational Fluid Dynamics (CFD), biomechanics or acoustics, among others. In the present thesis, the problem is approached from the Computational Aeroacoustics (CAA) point of view and the first main objective consists in developing numerical methods of general application that can take part in the solution of any scenario related to human phonation with a reasonable cost. In this sense, only the compressible Navier-Stokes equations can describe all flow and acoustic scales without any modeling, which is known as Direct Numerical Simulation (DNS), but its computational cost is usually unaffordable. Even in the case of a Large Eddy Simulation (LES), where the small scales are modeled, the cost can still be a handicap due to the complexity of the problem. This drawback gets worse in the low Mach regime due to the large disparity between flow velocity and sound speed, which leads to an ill-conditioning of the system of equations, specially for conservative schemes. At this point, it makes sense to move towards the incompressible flow approximation, bearing in mind the low velocities expected in human phonation problems.
Incompressible flows do not yield any acoustics, for which a second problem containing the propagation of the sound sources needs to be modeled and solved. These are the so called hybrid methods, which allow a better conditioning of the problem by segregating flow and acoustic scales. Lighthill's analogy has been taken as starting point for the present work, but its restriction to free-field scenarios has motivated the extension of the method to arbitrary geometries and non-uniform flows. The first development in this direction consists in a splitting of Lighthill's analogy into a quadrupolar and dipolar component, which does not change the original problem but allows assessing the contribution of solid boundaries to the generation of sound. The second step consists in the development of a stabilized Finite Element (FEM) formulation for the Acoustic Perturbation Equations (APE) which account for non-uniform flows and perform a complete filtering of the acoustic scales. The final step assumes the compressible approach but omitting the energy equation and thus considering both flow and acoustic propagation as isentropic. In this case the solver is unified and hence a method for applying compatible boundary conditions for flow and acoustics has been developed. Moreover, the whole numerical framework has been extended to dynamic phonation cases, which require using an Arbitrary Lagrangian Eulerian (ALE) reference. Also, a novel remeshing strategy with conservative interpolation between meshes is presented.
In the last chapter a challenging case in human phonation has been chosen for testing the developed computational framework: the fricative phoneme /s/. Unlike vowels, which are voiced sounds defined by a few characteristic frequencies, fricatives cannot be simulated as the propagation of a known analytic solution (glottal pulse) because the sound sources correspond to a wide range of turbulent scales. Therefore, a CFD calculation is mandatory in order to capture all relevant eddies behind the generation of sound. This problem is solved with an LES together with the Variational Multiscale (VMS) stabilization method as turbulence model, which is supplemented with several acoustic formulations when using incompressible flow. The analysis of the results focuses on the numerical representation of turbulence and the acoustic signal at the far-field, which has been compared to experimental recordings. Finally, the role of the upper incisors in the generation of the fricative sound has been evaluated. All simulations have been run with the parallel multiphysics FEM code FEMUSS, based on FORTRAN Object-Oriented-Programming land the OpenMPI parallel library.
La solució del problema de la veu humana des de la mecànica computacional és objecte d'estudi per part de diverses disciplines, com per exemple la Dinàmica de Fluids Computacional (CFD), la biomecànica o l'acústica. En la present tesi s'encara el problema des de l'Aeroacústica Computacional (CAA) i el primer objectiu consisteix en desenvolupar mètodes numèrics d'aplicació general que puguin ser part de la solució, amb un cost computacional raonable, de qualsevol escenari relacionat amb la fonació humana. En aquest sentit, només les equacions de flux compressible de Navier-Stokes aconsegueixen descriure totes les escales alhora, tant les dinàmiques com les acústiques, sense recórrer a cap modelització, conegut com a Simulació Numèrica Directa (DNS), però el seu cost computacional és normalment inassumible. Fins i tot en el cas d'una Large Eddy Simulation (LES), on les escales petites són modelades, el cost pot resultar excessiu a causa de la complexitat del problema. Aquest fet encara és més accentuat en el règim de baix nombre de Mach donada la gran disparitat entre la velocitat del fluid i la del so i el conseqüent mal condicionament del sistema d'equacions, sobretot en esquemes conservatius. Per tant, tenint en compte les baixes velocitats de l'aire al tracte vocal, té sentit recórrer a l'aproximació de flux incompressible. Els fluids incompressibles no inclouen la part acústica, de manera que cal calcular un segon problema que descrigui la propagació de les fonts de so. Aquests són els anomenats mètodes híbrids, que permeten un millor condicionament del problema gràcies a la segregació de les escales acústiques de les dinàmiques. S'ha pres l'analogia de Lighthill com a punt de partida, però la seva restricció a casos en camp obert ha motivat l'extensió del mètode cap a geometries arbitràries i fluxos no uniformes. El primer desenvolupament en aquesta direcció consisteix en la divisió de l'analogia de Lighthill en una component quadrupolar i una altra de dipolar, fet que no altera el problema original però que permet analitzar la contribució de cossos sòlids en la generació de so. El segon pas consisteix en el desenvolupament d'una formulació estabilitzada en elements finits (FEM) de les Acoustic Perturbation Equations (APE), que incorporen la propagació en fluxos no uniformes i que realitzen un filtrat complet de les escales acústiques. El pas final assumeix la compressibilitat del fluid però omet l'equació d'energia, i per tant considera la dinàmica i l'acústica fenòmens isentròpics. En aquest cas el solver és unificat i per tant s'ha desenvolupat un mètode per imposar condicions de contorn compatibles entre ambdues escales del fluid. Finalment, les formulacions numèriques han estat adaptades a casos de fonació dinàmica mitjançant una referència Arbitrària Lagrangiana Euleriana (ALE). A més, es presenta una estratègia de remallat amb interpolació conservativa entre malles. En l'últim capítol es presenta un cas de fonació humana que suposa un repte per la seva complexitat i que ha servit per validar les formulacions numèriques presentades: la fricativa sorda /s/. A diferència de les vocals, que són sons sonors definits per unes poques freqüències característiques, les fricatives no poden ser simulades com la propagació d'una funció analítica coneguda (pols glotal) perquè les fonts de so corresponen a un rang ampli d'escales turbulents. Per tant és necessària una simulació CFD per tal de capturar-les. El problema se soluciona amb un model de turbulència LES amb el mètode d'estabilització Variational Multiscale. L'anàlisi se centra en la representació numèrica de la turbulència i en el senyal acústic al camp llunyà, tot comparant-lo amb dades experimentals. Finalment, s'avalua la contribució dels incisius superiors en la generació del so fricatiu sord /s/. Totes les simulacions han estat realitzades amb el codi FEM multi-físic en paral·lel FEMUSS, basat en programació orientada a objectes en FORTRAN i en OpenMPI.