In this work, we study cylindrically symmetric solutions within SU(3) non-Abelian Proca theory coupled to a Higgs scalar field. The solutions describe tubes containing either the flux of a color electric field or the energy flux and momentum. It is shown that the existence of such tubes depends crucially on the presence of the Higgs field (there are no such solutions without this field). We examine the dependence of the integral characteristics (linear energy and momentum densities) on the values of the electromagnetic potentials at the center of the tube, as well as on the values of the coupling constant of the Higgs scalar field. The solutions obtained are topologically trivial and demonstrate the dual Meissner effect: the electric field is pushed out by the Higgs scalar field.