Biodegradable, biocompatible poly(ester amide)s (co-PEAs), composed of amino acids, fatty diols and carboxylic acids, have been synthesized. To improve the performance of co-PEAs in Federal Drug Administration-approved solvents such as water and ethanol, these polymers were complexed with poly(ethylene glycol) (PEG) of 10 kDa molecular mass have been prepared by solution blending. The non-covalent adducts were purified by precipitation into hexanes. Co-PEAs are soluble in organic solvents but are insoluble in water and ethanol; however, the co-PEA/PEG (0.8:1, w/w) adducts are soluble in ethanol and slightly soluble in water. 2D-NOESY NMR spectroscopy suggests that the non-covalent adducts are held together by multiple non-covalent interactions between the -CH2- groups of the two polymers (co-PEA and PEG). Differential scanning calorimetry studies indicate that the two polymers are interacting in the non-covalent adducts; the thermal properties of the adducts are different from those of the pure polymers. The solid-state adduct structures have been determined by atomic force microscopy (AFM). By one sample preparation method, nanoscale pancake-like structures were observed with an average diameter of 260 nm and an average height of 16 nm. Films of co-PEAs and (co-PEA)/PEG adducts containing Rhodamine B Base (RhBB), a model hydrophobic drug, were prepared. From the adduct/RhBB film containing 3% RhBB, 20% of the total RhBB was released within the first 2 h. Film and adduct composition may be varied to obtain different release profiles. The studies reported here demonstrate that non-covalent conjugation is a relatively easy and effective approach in developing new materials for application as biomaterials.