Supply chain management applies more and more Industry 4.0 innovations to increase their availability, elasticity, sustainability, and efficiency. In interconnected logistics networks, operations are integrated from suppliers through 3rd party logistics providers to customers. There are different delivery models depending on the time and cost. In the last few years, a wide range of customers is willing to pay an extra fee for the same delivery or instant delivery. This fact led to the increased importance of the optimized design and control of first mile/last mile (FMLM) delivery solutions. Cyberphysical system-based service innovations make it possible to enhance the productivity of FMLM delivery in the big data environment. The design and operation problems can be described as NP-hard optimization problems. These problems can be solved using sophisticated models and methods based on heuristic and metaheuristic algorithms. This research proposes an integrated supply model of FMLM delivery. After a careful literature review, this paper introduces a mathematical model to formulate the problem of realtime smart scheduling of FMLM delivery. The integrated model includes the assignment of first mile and last mile delivery tasks to the available resources and the optimization of operations costs, while constraints like capacity, time window, and availability are taken into consideration. Next, a black hole optimization-(BHO-) based algorithm dealing with a multiobjective supply chain model is presented. The sensitivity of the enhanced algorithm is tested with benchmark functions. Numerical results with different datasets demonstrate the efficiency of the proposed model and validate the usage of Industry 4.0 inventions in FMLM delivery.