Chili (Capsicum annuum L.) is an important source of total carotene and vitamin C. Both substances are widely used in food processing materials, supporting a healthy immune system and medicine. However, destructive testing often obtains information about the substances, which damages the tested material and requires a relatively long analysis. Therefore, this research aims to develop calibration models of total carotene and vitamin C in chili powder for non-destructive testing using near-infrared spectroscopy. The samples consist of four groups of color, i.e., light green, dark green, red tinge, and red, with a total of 84 samples. Seventy percent of the sample was used for calibration, while the rest of the sample was used for validation. Spectra were measured using the NIRFlex N-500 instrument at a wavelength of 1000 nm to 2500 nm and analyzed with the partial least square (PLS) method using three spectral pre-treatments, which are multiplicative scatter correction (MSC), first derivative savitzky-golay, and de-trending. The accuracy and model reliability was determined by the coefficient of determination (R 2 ) and the residual predictive deviation (RPD). The best calibration models were successfully obtained when the spectrum was processed using the first derivative savitzky-golay pre-treatment with 6 and 5 PLS factors for vitamin C and total carotene, respectively. Both models were accurate and can be potentially used for determining the total carotene and vitamin C in chili powder samples non-destructively.