This pioneering experimental work is a proof of concept in which ultrasonic flexural waves have been imaged in a spatially and temporally resolved manner. Thin vibrating plates made of mirror glass and carbon/epoxy composite have been used in the experiments. Results obtained via a standard approach (scanning laser Doppler vibrometry) and the novel methodology based on deflectometry have been compared with a multi-physics finite element simulation. There is a very good correlation between the two experimental techniques. The numerical model provides insight into the experiments, but differs in its detailed structure due to uncertainties over material properties. The extreme slope resolution of deflectometry allows the measurement of peak-to-peak deflections of a few tens of nanometres in one shot. The use of an ultra-high speed camera allows for both space and time resolved measurements of Lamb waves which, to the best knowledge of the authors, has never been reported before. The limitations of the technique arise from the need for a flat specularly reflective surface. However, coating is possible for non-reflective materials and extension to moderately curved surfaces is possible in the future.