2013
DOI: 10.1016/j.coldregions.2012.09.002
|View full text |Cite
|
Sign up to set email alerts
|

Non-equilibrium crystallization in freezing porous media: Numerical solution

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
2

Year Published

2015
2015
2022
2022

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(7 citation statements)
references
References 12 publications
0
5
0
2
Order By: Relevance
“…Therefore, a linear relation is only considered reliable under static conditions (Takashi et al, 1982). However, the freezing and thawing of an open system is more likely to be a nonequilibrium thermodynamic process in many cases (Bronfenbrener, 2013). Wood (1990) suggested a pressure difference between the ice and aqueous phases throughout the freeze-thaw cycle and ice deformation consecutively, making it difficult to approach equilibrium.…”
Section: Driving Forces Of Water Migrationmentioning
confidence: 99%
“…Therefore, a linear relation is only considered reliable under static conditions (Takashi et al, 1982). However, the freezing and thawing of an open system is more likely to be a nonequilibrium thermodynamic process in many cases (Bronfenbrener, 2013). Wood (1990) suggested a pressure difference between the ice and aqueous phases throughout the freeze-thaw cycle and ice deformation consecutively, making it difficult to approach equilibrium.…”
Section: Driving Forces Of Water Migrationmentioning
confidence: 99%
“…4) Soil freezing may be more inclined to be a non-equilibrium (irreversible) thermodynamic process because of the influence of such factors as relaxation time (Bronfenbrener, 2013), water migration, and deformations of ice and the soil skeleton. Compared to the equilibrium state, a higher pore water pressure and a lower ice pressure occur in a non-equilibrium state.…”
Section: Application Conditions Of the Gcce In Soil Freezingmentioning
confidence: 99%
“…В работе [11] предлагается следующая модель для описания процесса замораживания влагонасыщенной породы с учетом влияния остаточной влажности на кинетику фазового перехода: Идентификация параметра a0 проводилась с использованием того же вычислительного алгоритма, что и при определении коэффициентов температуропроводности. По результатам идентификации параметр a0 принял значение 184,2.…”
Section: рис5 результаты исследования влияния размера конечного элемента (сверху) и ширины интервала фазового перехода (снизу) на результunclassified
“…Параметр a0 определяет вид функции остаточной влажности и не имеет физического смысла. Функции для определения коэффициента диффузии и характерного времени кристаллизации были взяты из [11].…”
Section: рис5 результаты исследования влияния размера конечного элемента (сверху) и ширины интервала фазового перехода (снизу) на результunclassified