2021
DOI: 10.1109/jbhi.2021.3077002
|View full text |Cite
|
Sign up to set email alerts
|

Non-Invasive Heart Rate Estimation From Ballistocardiograms Using Bidirectional LSTM Regression

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(3 citation statements)
references
References 34 publications
0
2
0
1
Order By: Relevance
“…Jung et al used the Probability Density Function and fused multi-channel data to achieve a MAE of 1.78 bpm in the supine position, based on the data collected from eleven healthy subjects (Jung et al, 2021). Jiao et al reported a remarkable performance of the LSTM network with the lowest MAE of 0.68 (Jiao et al, 2021). However, it should be noted that Jiao's MAE of heart rate was computed and averaged every 15 s on the test data.…”
Section: Discussionmentioning
confidence: 99%
“…Jung et al used the Probability Density Function and fused multi-channel data to achieve a MAE of 1.78 bpm in the supine position, based on the data collected from eleven healthy subjects (Jung et al, 2021). Jiao et al reported a remarkable performance of the LSTM network with the lowest MAE of 0.68 (Jiao et al, 2021). However, it should be noted that Jiao's MAE of heart rate was computed and averaged every 15 s on the test data.…”
Section: Discussionmentioning
confidence: 99%
“…This resulted in numerous studies that focused on providing techniques to better understand the current health status of patients ( Odendaal et al, 2019 ; Diab et al, 2021 ). Such studies that focus on providing techniques for monitoring the health status of the heart include, but are not limited to, support vector machines to aid the auscultation procedure using computed tomography scan images () machine learning model based on activity tracker data to classify patient health status ( Meng et al, 2020 ), a bidirectional long short-term memory (bi-LSTM) regression network for noninvasive heart rate (HR) estimation from ballistocardiogram signals ( Jiao et al, 2021 ), a binary classification model for assessing the neonatal heart and lung sound quality for the heart, and breathing rate estimation for telehealth applications ( Grooby et al, 2021 ).…”
Section: Introductionmentioning
confidence: 99%
“…V. CONCLUSIONES Las redes de tipo LSTM son capaces de representar relaciones en señales biológicas como lo mostrado en [9] y [10] donde se llevó a cabo un modelo de predicción de patrones depresivos y estimación del ritmo cardiaco a partir de señales de EEG y BCG respectivamente. La implementación de este estudio es capaz de representar la señal oculográfica incluyendo los movimientos sacádicos del ojo gracias a las señales de referencia de EOG, así como de un seguimiento en el tiempo dentro de un límite de 0.5 segundos.…”
Section: A Salida De Los Sensoresunclassified