The functions of multiple instances (FUMI) approach for learning target and nontarget signatures is introduced. FUMI is a generalization of the multiple-instance learning (MIL) approach for supervised learning. FUMI differs significantly from standard MIL and supervised learning approaches because only data points which are functions of class concepts/signatures are available. In particular, this paper addresses the problem in which data points are convex combinations of target and nontarget signatures. Two algorithms, convex FUMI (cFUMI) and extended cFUMI (eFUMI), are presented and applied to the problem of hyperspectral unmixing and target detection. cFUMI learns target and nontarget signatures (i.e., target and nontarget endmembers), the number of nontarget signatures, and the proportion of each signature for every data point. The eFUMI algorithm extends the cFUMI to allow for additional "bag level" uncertainty in training labels. For these methods, training data need only binary labels indicating whether a data point (or some spatial area in the case of eFUMI) contains or does not contain some proportion of the target; the specific target proportions for the training data are not needed. After learning the target signature using the binary-labeled training data, target detection can be performed on test data. Results for subpixel target detection on simulated and real airborne hyperspectral data are shown.
In this paper, two methods for discriminative multiple instance target characterization, MI-SMF and MI-ACE, are presented. MI-SMF and MI-ACE estimate a discriminative target signature from imprecisely-labeled and mixed training data. In many applications, such as sub-pixel target detection in remotely-sensed hyperspectral imagery, accurate pixel-level labels on training data is often unavailable and infeasible to obtain. Furthermore, since sub-pixel targets are smaller in size than the resolution of a single pixel, training data is comprised only of mixed data points (in which target training points are mixtures of responses from both target and non-target classes). Results show improved, consistent performance over existing multiple instance concept learning methods on several hyperspectral sub-pixel target detection problems.
The potential risks of x-ray to patients have transferred the public’s attention from normal dose CT (NDCT) to low-dose CT (LDCT). However, simply lowering the radiation dose of the CT system will significantly degrade the quality of CT images such as noise and artifacts, which compromises the diagnostic performance. Hence, various methods have been proposed to solve this problem over the past decades. Although these methods have achieved impressive results, they also suffer from a drawback of smoothing image details after denoising, which makes it difficult for clinical diagnosis and treatment. To address this issue, this paper introduces a novel gradient regularization method for LDCT enhancement. Rather than common methods which only consider the pixel-wise gray value loss in the reconstruction procedure, we also take the image gradient loss into consideration to preserve image details. By combining the gradient regularization method and the convolutional neural network (CNN) framework, a gradient regularized convolutional neural network (GRCNN) is proposed to enhance LDCT images which has achieved promising performance in our experiments both visually and quantitatively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.