In recent years, research on human psychological stress using wearable devices has gradually attracted attention. However, the physical and psychological differences among individuals and the high cost of data collection are the main challenges for further research on this problem. In this work, our aim is to build a model to detect subjects’ psychological stress in different states through electrocardiogram (ECG) signals. Therefore, we design a VR high-altitude experiment to induce psychological stress for the subject to obtain the ECG signal dataset. In the experiment, participants wear smart ECG T-shirts with embedded sensors to complete different tasks so as to record their ECG signals synchronously. Considering the temporal continuity of individual psychological stress, a deep, gated recurrent unit (GRU) neural network is developed to capture the mapping relationship between subjects’ ECG signals and stress in different states through heart rate variability features at different moments, so as to build a neural network model from the ECG signal to psychological stress detection. The experimental results show that compared with all comparison methods, our method has the best classification performance on the four stress states of resting, VR scene adaptation, VR task and recovery, and it can be a remote stress monitoring solution for some special industries.
Heart rate is one of the most important diagnostic bases for cardiovascular disease. This paper introduces a deep autoencoding strategy into feature extraction of electrocardiogram (ECG) signals, and proposes a beat-to-beat heart rate estimation method based on convolution autoencoding and Gaussian mixture clustering. The high-level heartbeat features were first extracted in an unsupervised manner by training the convolutional autoencoder network, and then the adaptive Gaussian mixture clustering was applied to detect the heartbeat locations from the extracted features, and calculated the beat-to-beat heart rate. Compared with the existing heartbeat classification/detection methods, the proposed unsupervised feature learning and heartbeat clustering method does not rely on accurate labeling of each heartbeat location, which could save a lot of time and effort in human annotations. Experimental results demonstrate that the proposed method maintains better accuracy and generalization ability compared with the existing ECG heart rate estimation methods and could be a robust long-time heart rate monitoring solution for wearable ECG devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.