Background: Few studies have investigated spinal cord autoregulation using near-infrared spectroscopy (NIRS). Here, we assessed spinal cord autoregulation under normal, hypovolemic, and post-fluid resuscitation conditions compared with cerebral autoregulation. Methods: Ten pigs (36.1 ± 1.1 kg) were anesthetized with 2.5% isoflurane, before phenylephrine administration at 0.5, 1, 2, and 5 μg kg −1 min −1 in a stepwise fashion at 10-min intervals (baseline), followed by similar administration of sodium nitroprusside (SNP). Hypovolemia was induced by a 600-ml bleed (25% estimated total blood volume). Only phenylephrine was readministered (same protocol). Hypovolemia was reversed by infusing 600 ml hydroxyethyl starch, before readministering phenylephrine and SNP. The relationships between mean arterial pressure (MAP) and cerebral, thoracic, and lumbar spinal cord tissue oxygenation indices (TOIs) were evaluated. Results: Thoracic and lumbar spinal cord TOIs were approximately 15% and 10% lower, respectively, than the cerebral TOI at similar MAPs. The average relationship between MAP and each TOI showed an autoregulatory pattern, but negative correlations were observed in the cerebral TOI during phenylephrine infusion. A 600-ml bleed lowered each relationship < 5% and subsequent fluid resuscitation did not change the relationship. Individual oxygenation responses to blood pressure indicated that the spinal cord is more pressure-passive than the cerebrum. Paradoxical responses (an inverse relationship of tissue oxygenation to MAP) were observed particularly in cerebrum during phenylephrine infusion and were rare in the spinal cord.Conclusions: Spinal cord autoregulation is less robust than cerebral autoregulation and more pressure-dependent. Similar to cerebral oxygenation, spinal cord oxygenation is volume-tolerant but is more sensitive to hypotension.