In this work, we consider a non-parametric estimator of the variance in one-dimensional diffusion models or, more generally, in Itô processes with a deterministic diffusion term and a general non-anticipative drift. The estimation is based on the quadratic variation of discrete time observations over a finite interval. In particular, a central limit theorem (CLT) is proved for the deviation in L p norm (p ≥ 1) between the variance and this estimator. The method of the proof consists in writing the L p norm of the deviation, when the drift term is equal to zero, as a sum of 4-dependent random variables. The moments are then computed by means of a Gaussian approximation and a CLT for m-dependent random variables is applied. The convergence is stable in law, this allows the result for processes with general drifts to be obtained, by using Girsanov's formula.