Abstract. The increased frequency and magnitude of extreme rainfall events due to anthropogenic climate change, and decadal and multi-decadal climate variability question the stationary climate assumption. The possible violation of stationarity in climate can cause erroneous estimation of design rainfalls derived from extreme rainfall frequency analysis. This may result in significant consequences for infrastructure and flood protection projects since design rainfalls are essential input for design of these projects. Therefore, there is a need to conduct frequency analysis of extreme rainfall events in the context of non-stationarity, when nonstationarity is present in extreme rainfall events. A methodology consisting of threshold selection, extreme rainfall data (peaks over threshold data) construction, trend and nonstationarity analysis, and stationary and non-stationary generalised Pareto distribution (GPD) models was developed in this paper to investigate trends and non-stationarity in extreme rainfall events, and potential impacts of climate change and variability on intensity-frequency-duration (IFD) relationships. The methodology developed was successfully implemented using rainfall data from an observation station in Melbourne (Australia) for storm durations ranging from 6 min to 72 h. Although statistically significant trends were detected in extreme rainfall data for storm durations of 30 min, 3 h and 48 h, statistical non-stationarity tests and non-stationary GPD models did not indicate non-stationarity for these storm durations and other storm durations. It was also found that the stationary GPD models were capable of fitting extreme rainfall data for all storm durations. Furthermore, the IFD analysis showed that urban flash flood producing hourly rainfall intensities have increased over time.