2015 IEEE Power, Communication and Information Technology Conference (PCITC) 2015
DOI: 10.1109/pcitc.2015.7438136
|View full text |Cite
|
Sign up to set email alerts
|

Non stationary signal analysis and classification using FTT transform and Naive Bayes classifier

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2017
2017
2023
2023

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 13 publications
0
2
0
1
Order By: Relevance
“…Naive Bayes termasuk salah satu algoritma dalam penggolongan probabilitas sederhana yang berdasarkan pada penerapan teori Bayes dengan asumsi indepedensi yang kuat (naive) pada fitur-fitur yang ada serta salah satu teknik sederhana untuk membangun klasifikasi model dengan menetapkan kelas untuk suatu masalah [9] [10].…”
Section: Naïve Bayesunclassified
“…Naive Bayes termasuk salah satu algoritma dalam penggolongan probabilitas sederhana yang berdasarkan pada penerapan teori Bayes dengan asumsi indepedensi yang kuat (naive) pada fitur-fitur yang ada serta salah satu teknik sederhana untuk membangun klasifikasi model dengan menetapkan kelas untuk suatu masalah [9] [10].…”
Section: Naïve Bayesunclassified
“…The combination of BC and SVM for hardware explanation of PQ disturbances is discussed in [195]. Although the probability density function of single and multiple PQ events must be identified in advance in Naive-BC, it is beneficial for the identification of signal patterns applied to classify different PQ disturbances in [196]. Application of BC networks in renewable energy sources, such as solar thermal, geothermal, hydroelectric energies, SPV, WE and biomass is explained in [197].…”
Section: E: Bayesian Classifier Based Pqds Classificationmentioning
confidence: 99%
“…In a Bayesian Classifier, the learning agent builds a probabilistic model of the features and uses that model to predict the classification of a new example [24], [25]. Naïve Bayesian Classifier is the simplest case which assumes that the input features are independent of each other for a given condition of classification features.…”
Section: Naive Bayesian Classifier (Nbc)mentioning
confidence: 99%