2005
DOI: 10.1016/j.amc.2004.08.038
|View full text |Cite
|
Sign up to set email alerts
|

Nonexistence of global solutions to a hyperbolic equation with a space–time fractional damping

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
7
0

Year Published

2011
2011
2021
2021

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(7 citation statements)
references
References 10 publications
0
7
0
Order By: Relevance
“…Finally, using (12), and letting T → ∞ into the above inequality, we obtain R N F(x)|x| −ν dx ≤ 0, which contradicts the condition R N F(x)|x| −ν dx > 0. The proof of Theorem 2 is completed.…”
Section: Proof Of Theoremmentioning
confidence: 91%
See 1 more Smart Citation
“…Finally, using (12), and letting T → ∞ into the above inequality, we obtain R N F(x)|x| −ν dx ≤ 0, which contradicts the condition R N F(x)|x| −ν dx > 0. The proof of Theorem 2 is completed.…”
Section: Proof Of Theoremmentioning
confidence: 91%
“…Due to the usefulness of fractional derivatives in modeling various phenomena from science and engineering (as can be seen in, e.g., [6][7][8][9]), the study of fractional partial differential equations (as well as fractional differential equations) becomes a subject of increasing concern. The study of the nonexistence of global solutions to time-fractional evolution equations and inequalities has been initiated by Kirane and their collaborators (as can be seen in, e.g., [10][11][12][13][14]). In particular, in [13], Kirane et al studied the nonexistence of nontrivial global weak non-negative solutions to the fractional-in-time and in-space evolution equation:…”
Section: Introductionmentioning
confidence: 99%
“…Before we state and prove our result, let us dwell on existence literature. Single wave equations or systems of wave equations have been studied in large; we may mention the books of Lions [2], Reed [3], Georgiev [4], and Strauss [5] and the papers of Aliev et al [6], Said-Houari [7], Takeda [8], Goergiev and Todorova [9], Todorova and Yordanov [10], Zhang [11], and Kirane and Qafsaoui [12] for equations and systems with classical linear or nonlinear damping and Tatar [13], Kirane and Tatar [14], and Kirane and Laskri [15] for wave equations with fractional damping. In particular, in [13], the following problem was considered:…”
Section: Introductionmentioning
confidence: 99%
“…Namely, it was shown that the solution of ( 2) is unbounded and grows up exponentially in the L p+1 -norm for sufficiently large initial data. In [15], the following problem was studied:…”
Section: Introductionmentioning
confidence: 99%
“…Theory and numerical methods of initial-boundary value problems for fractional parabolic equations were investigated by many researchers (see, e.g., [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][22][23][24] and the references given therein). In this paper, the initial-boundary value problem for the multidimensional fractional parabolic equation…”
Section: Introductionmentioning
confidence: 99%