Surfactant protein-D (Sftpd) is a pulmonary collectin important in down-regulating macrophage inflammatory responses. In these experiments, we analyzed the effects of chronic macrophage inflammation attributable to loss of Sftpd on the persistence of ozoneinduced injury, macrophage activation, and altered functioning in the lung. Wild-type (Sftpd 1/1 ) and Sftpd 2/2 mice (aged 8 wk) were exposed to air or ozone (0.8 parts per million, 3 h). Bronchoalveolar lavage (BAL) fluid and tissue were collected 72 hours later. In Sftpd 2/2 mice, but not Sftpd 1/1 mice, increased BAL protein and nitrogen oxides were observed after ozone inhalation, indicating prolonged lung injury and oxidative stress. Increased numbers of macrophages were also present in BAL fluid and in histologic sections from Sftpd 2/2 mice. These cells were enlarged and foamy, suggesting that they were activated. This conclusion was supported by findings of increased BAL chemotactic activity, and increased expression of inducible nitric oxide synthase in lung macrophages. In both Sftpd 1/1 and Sftpd 2/2 mice, inhalation of ozone was associated with functional alterations in the lung. Although these alterations were limited to central airway mechanics in Sftpd 1/1 mice, both central airway and parenchymal mechanics were modified by ozone exposure in Sftpd 2/2 mice. The most notable changes were evident in resistance and elastance spectra and baseline lung function, and in lung responsiveness to changes in positive endexpiratory pressure. These data demonstrate that a loss of Sftpd is associated with prolonged lung injury, oxidative stress, and macrophage accumulation and activation in response to ozone, and with more extensive functional changes consistent with the loss of parenchymal integrity.
Keywords: ozone; surfactant protein-D; macrophages; iNOS; lung functionOzone is a ubiquitous urban air pollutant generated as a component of photochemical smog. Inhaled ozone causes ozonation and the peroxidation of proteins and lipids in the epithelial lining fluid layer of the lung, resulting in the production of oxidized proteins, aldehydes, and free radicals, which can damage surrounding tissue (1, 2). This is accompanied by an accumulation of activated macrophages in the lung and the production of additional cytotoxic and proinflammatory mediators, including reactive oxygen and reactive nitrogen species (ROS and RNS, respectively) that contribute to tissue injury (3). Airway and tissue mechanics are also altered after ozone exposure. Thus, in humans, ozone inhalation leads to a deterioration of pulmonary function, as measured by decreases in respiratory frequency, forced expiratory volume in 1 second, and forced vital capacity, and increases in airway resistance (1,4,5). Ozone has been shown to exacerbate asthma and increase airway hyperreactivity (5, 6), and to contribute to increased morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD) (7,8). Similar alterations in lung function and increases in sensitivity to ozone have b...