In this paper, a disturbance observer-based complementary fractional-order sliding mode control (CFOSMC) scheme is proposed for the permanent magnet synchronous motor (PMSM) drive system. First, to reconstruct the load disturbance and parameter variations, a nonlinear disturbance observer is designed. Next, a disturbance observer-based fractional-order sliding mode with a saturation function control law is designed to reduce the chattering problem in the existing fractional-order sliding mode control (FOSMC) method. Furthermore, to reduce the thickness of the boundary layer, a CFOSMC scheme is designed. By using the fractional-order Lyapunov stability theorem, the existence condition and the chattering problem are analyzed. Compared with the existing FOSMC, the obtained CFOSMC law does not contain any high-order derivatives of tracking error, which is easier to implement. Finally, the numerical simulations and experimental results are provided to show the superiority of the proposed method. To improve the performance of the permanent magnet synchronous motor (PMSM) drive system in terms of tracking rapidity, accuracy, and robustness, a complementary fractional-order sliding mode control (CFOSMC) scheme with disturbance observer is proposed in this paper.