The 1 H and 13 C NMR chemical shifts of 48 industrially preferred solvents in six commonly used deuterated NMR solvents (CDCl 3 , acetone-d 6 , DMSO-d 6 , acetonitrile-d 3 , methanol-d 4 , and D 2 O) are reported. This work supplements the compilation of NMR data published by Gottlieb, Kotlyar, and Nudelman (J. Org. Chem. 1997, 62, 7512) by providing spectral parameters for solvents that were not commonly utilized at the time of their original report. Data are specifically included for solvents, such as 2-Me-THF, n-heptane, and iso-propyl acetate, which are being used more frequently as the chemical industry aims to adopt greener, safer, and more sustainable solvents. These spectral tables simplify the identification of these solvents as impurities in NMR spectra following their use in synthesis and workup protocols.
In pedagogy, teachers usually separate mixed-level students into different levels, treat them differently and teach them in accordance with their cognitive and learning abilities. Inspired from this idea, we consider particles in the swarm as mixed-level students and propose a level-based learning swarm optimizer (LLSO) to settle large-scale optimization, which is still considerably challenging in evolutionary computation. At first, a level-based learning strategy is introduced, which separates particles into a number of levels according to their fitness values and treats particles in different levels differently. Then, a new exemplar selection strategy is designed to randomly select two predominant particles from two different higher levels in the current swarm to guide the learning of particles. The cooperation between these two strategies could afford great diversity enhancement for the optimizer. Further, the exploration and exploitation abilities of the optimizer are analyzed both theoretically and empirically in comparison with two popular particle swarm optimizers. Extensive comparisons with several state-of-the-art algorithms on two widely used sets of large-scale benchmark functions confirm the competitive performance of the proposed optimizer in both solution quality and computational efficiency. Finally, comparison experiments on problems with dimensionality increasing from 200 to 2000 further substantiate the good scalability of the developed optimizer.
Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization (ACO) algorithms in preserving high diversity, this paper intends to extend ACO algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ACO algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima.
Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima.
Given the highly increased incidence of human diseases, a better understanding of the related mechanisms regarding endogenous metabolism is urgently needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.