Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization (ACO) algorithms in preserving high diversity, this paper intends to extend ACO algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ACO algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima.
Person re-identification aims to match the images of pedestrians across different camera views from different locations. This is a challenging intelligent video surveillance problem that remains an active area of research due to the need for performance improvement. Person re-identification involves two main steps: feature representation and metric learning. Although the keep it simple and straightforward (KISS) metric learning method for discriminative distance metric learning has been shown to be effective for the person re-identification, the estimation of the inverse of a covariance matrix is unstable and indeed may not exist when the training set is small, resulting in poor performance. Here, we present dual-regularized KISS (DR-KISS) metric learning. By regularizing the two covariance matrices, DR-KISS improves on KISS by reducing overestimation of large eigenvalues of the two estimated covariance matrices and, in doing so, guarantees that the covariance matrix is irreversible. Furthermore, we provide theoretical analyses for supporting the motivations. Specifically, we first prove why the regularization is necessary. Then, we prove that the proposed method is robust for generalization. We conduct extensive experiments on three challenging person re-identification datasets, VIPeR, GRID, and CUHK 01, and show that DR-KISS achieves new state-of-the-art performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.