Object detection is important in real-world applications. Existing methods mainly focus on object detection with sufficient labelled training data or zero-shot object detection with only concept names. In this paper, we address the challenging problem of zero-shot object detection with natural language description, which aims to simultaneously detect and recognize novel concept instances with textual descriptions. We propose a novel deep learning framework to jointly learn visual units, visual-unit attention and word-level attention, which are combined to achieve word-proposal affinity by an element-wise multiplication. To the best of our knowledge, this is the first work on zero-shot object detection with textual descriptions. Since there is no directly related work in the literature, we investigate plausible solutions based on existing zero-shot object detection for a fair comparison. We conduct extensive experiments on three challenging benchmark datasets. The extensive experimental results confirm the superiority of the proposed model.
With the continuous renewal of text classification rules, text classifiers need more powerful generalization ability to process the datasets with new text categories or small training samples. In this paper, we propose a text classification framework under insufficient training sample conditions. In the framework, we first quantify the texts by a character-level convolutional neural network and input the textual features into an adversarial network and a classifier, respectively. Then, we use the real textual features to train a generator and a discriminator so as to make the distribution of generated data consistent with that of real data. Finally, the classifier is cooperatively trained by real data and generated data. Extensive experimental validation on four public datasets demonstrates that our method significantly performs better than the comparative methods.
Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization (ACO) algorithms in preserving high diversity, this paper intends to extend ACO algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ACO algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima.
Long non-coding RNAs (lncRNAs) can regulate gene expression directly or indirectly through interacting with microRNAs (miRNAs). However, the role of differentially expressed mRNAs, lncRNAs and miRNAs, and especially their related competitive endogenous RNAs (ceRNA) network in head and neck squamous cell carcinoma (HNSCC), is not fully comprehended. In this paper, the lncRNA, miRNA, and mRNA expression profiles of 546 HNSCC patients, including 502 tumor and 44 adjacent non-tumor tissues, from The Cancer Genome Atlas (TCGA) were analyzed. 82 miRNAs, 1197 mRNAs and 1041 lncRNAs were found to be differentially expressed in HNSCC samples (fold change ≥ 2; P < 0.01). Further bioinformatics analysis was performed to construct a lncRNA-miRNA-mRNA ceRNA network of HNSCC, which includes 8 miRNAs, 71 lncRNAs and 16 mRNAs. Through survival analysis based on the expression profiles of RNAs in the ceRNA network, we detected 1 mRNA, 1 miRNA and 13 lncRNA to have a significant impact on the overall survival of HNSCC patients (P < 0.05). Finally, some lncRNAs, which are more important for survival, were also predicted. Our research provides data to further understand the molecular mechanisms implicated in HNSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.