Virtual machine placement (VMP) and energy efficiency are significant topics in cloud computing research. In this paper, evolutionary computing is applied to VMP to minimize the number of active physical servers, so as to schedule underutilized servers to save energy. Inspired by the promising performance of the ant colony system (ACS) algorithm for combinatorial problems, an ACS-based approach is developed to achieve the VMP goal. Coupled with order exchange and migration (OEM) local search techniques, the resultant algorithm is termed an OEMACS. It effectively minimizes the number of active servers used for the assignment of virtual machines (VMs) from a global optimization perspective through a novel strategy for pheromone deposition which guides the artificial ants toward promising solutions that group candidate VMs together. The OEMACS is applied to a variety of VMP problems with differing VM sizes in cloud environments of homogenous and heterogeneous servers. The results show that the OEMACS generally outperforms conventional heuristic and other evolutionary-based approaches, especially on VMP with bottleneck resource characteristics, and offers significant savings of energy and more efficient use of different resources. Index Terms-Ant colony system (ACS), cloud computing, virtual machine placement (VMP). I. INTRODUCTION C LOUD computing is a large-scale distributed computing paradigm, driven by an increasing demand for various
A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
The application of multiobjective evolutionary algorithms to many-objective optimization problems often faces challenges in terms of diversity and convergence. On the one hand, with a limited population size, it is difficult for an algorithm to cover different parts of the whole Pareto front (PF) in a large objective space. The algorithm tends to concentrate only on limited areas. On the other hand, as the number of objectives increases, solutions easily have poor values on some objectives, which can be regarded as poor bottleneck objectives that restrict solutions' convergence to the PF. Thus, we propose a coevolutionary particle swarm optimization with a bottleneck objective learning (BOL) strategy for many-objective optimization. In the proposed algorithm, multiple swarms coevolve in distributed fashion to maintain diversity for approximating different parts of the whole PF, and a novel BOL strategy is developed to improve convergence on all objectives. In addition, we develop a solution reproduction procedure with both an elitist learning strategy (ELS) and a juncture learning strategy (JLS) to improve the quality of archived solutions. The ELS helps the algorithm to jump out of local PFs, and the JLS helps to reach out to the missing areas of the PF that are easily missed by the swarms. The performance of the proposed algorithm is evaluated using two widely used test suites with different numbers of objectives. Experimental results show that the proposed algorithm compares favorably with six other state-of-the-art algorithms on many-objective optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.