Methods for the extraction of nucleic acids are straightforward in instances where there is ample nucleic acid mass in the sample and contamination is minimal. However, applications in areas such as metagenomics, life science research, clinical research, and forensics, that are limited by smaller amounts of starting materials or more dilute samples, require sample preparation methods that are more efficient at extracting nucleic acids. Synchronous coefficient of drag alteration (SCODA) is a novel electrophoretic nucleic acid purification technology that has been tested successfully with both highly contaminated and dilute samples and is a promising candidate for new sample preparation challenges. In this article, as an example of SCODA's performance with limited sample material, we outline a genomic DNA (gDNA) extraction protocol from low abundance cultures of Escherichia coli DH10B. This method is equally well suited to high biomass samples.