The present work demonstrates the use of a dielectrophoretic lab-on-a-chip device in effectively separating different cancer cells of epithelial origin for application in circulating tumor cell (CTC) identification. This study uses dielectrophoresis (DEP) to distinguish and separate MCF-7 human breast cancer cells from HCT-116 colorectal cancer cells. The DEP responses for each cell type were measured against AC electrical frequency changes in solutions of varying conductivities. Increasing the conductivity of the suspension directly correlated with an increasing frequency value for the first cross-over (no DEP force) point in the DEP spectra. Differences in the cross-over frequency for each cell type were leveraged to determine a frequency at which the two types of cell could be separated through DEP forces. Under a particular medium conductivity, different types of cells could have different DEP behaviors in a very narrow AC frequency band, demonstrating a high specificity of DEP. Using a microfluidic DEP sorter with optically transparent electrodes, MCF-7 and HCT-116 cells were successfully separated from each other under a 3.2 MHz frequency in a 0.1X PBS solution. Further experiments were conducted to characterize the separation efficiency (enrichment factor) by changing experimental parameters (AC frequency, voltage, and flow rate). This work has shown the high specificity of the described DEP cell sorter for distinguishing cells with similar characteristics for potential diagnostic applications through CTC enrichment. V C 2013 American Institute of Physics. [http://dx
Separation of colorectal cancer cells from other biological materials is important for stool-based diagnosis of colorectal cancer. In this paper, we use conventional dielectrophoresis in a microfluidic chip to manipulate and isolate HCT116 colorectal cancer cells. It is noticed that at a particular alternating current frequency band, the HCT116 cells are clearly deflected to a side channel from the main channel after the electric activation of an electrode pair. This motion caused by negative dielectrophoresis can be used to simply and rapidly separate cancer cells from other cells. In this manuscript, we report the chip design, flow conditions, dielectrophoretic spectrum of the cancer cells, and the enrichment factor of the colorectal cancer cells from other cells.
Q. (2013). An acid catalyzed reversible ring-opening/ring-closure reaction involving a cyano-rhodamine spirolactam.
We have developed a novel, non-intrusive fluid velocity measurement method based on photobleaching of a fluorescent dye for microfluidic devices. The residence time of the fluorescent dye in a laser beam depends on the flow velocity and approximately corresponds to the decaying time of the photobleaching of the dye in the laser beam. The residence time is inversely proportional to the flow velocity. The fluorescence intensity increases with the flow velocity due to the decrease of the residence time. A calibration curve between fluorescence intensity and known flow velocity should be obtained first. The calibration relationship is then used to calculate the flow velocity directly from the measured fluorescence intensity signal. The new method can measure the velocity very quickly and is easy to use. It is demonstrated for both pressure driven flow and electroosmotic flow.
The phenomenon of enrichment of charged analytes due to the presence of an electric field barrier at the micro-nanofluidic interconnect can be harnessed to enhance sensitivity and limit-of-detection in sensor instruments. We present a numerical analysis framework to investigate two critical electrokinetic phenomena underlying the experimental observation in Plecis et al. (Micro Total Analysis Systems, pp 1038-1041, 2005b: (1) ion transport of background electrolytes (BGE) and (2) enrichment of analytes in the micro-nanofluidic devices that operate under hydrodynamic flow. The analysis is based on the full, coupled solution of the Poisson-Nernst-Planck (PNP) and Naviér-Stokes equations, and the results are validated against analytical models of simple canonical geometry. Parametric simulation is performed to capture the critical effects of pressure head and BGE ion concentration on the electrokinetics and ion transport. Key findings obtained from the numerical analysis indicate that the hydrodynamic flow and overlapped electrical double layer induce concentration-polarization at the interfaces; significant electric field barrier arising from the Donnan potential forms at the micro-nano interfaces; and streaming potential and overall potential are effectively established across the micro-nanofluidic device. The simulation to examine analyte enrichment and its dependence on the hydrodynamic flow and analyte properties, demonstrates that order-of-magnitude enrichment can be achieved using properly configured hydrodynamic flow. The results can be used to guide practical design and operational protocol development of novel micro-nanofluidic interconnect-based analyte preconcentrators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.