Linearity is an important index for evaluating the performance of various sensors. Under the Villari effect, there may be some hysteresis between the input force and the output voltage of a force sensor, meaning that the output will be multivalued and nonlinear. To improve the linearity and eliminate the hysteresis of such sensors, an output compensation method using a variable bias current is proposed based on the bidirectional energy conversion mechanism of giant magnetostrictive material. First, the magnetization relationship between the input force, bias current, and flux density is established. Second, a nonlinear neural network model of the force-magnetization hysteresis and a neural network model for the compensation control of the force sensor are established. These models are trained using the magnetic flux density-force curve and the magnetic flux density-current curve, respectively. Taking the optimal linearity as the objective function, the bias current under different input forces is optimized. Finally, a bias current control system is developed and an experimental test platform is built to verify the proposed method. The results show that the proposed variable bias current hysteresis compensation method enables the linearity under the return of the force sensor to reach 1.6%, which is around 48.3% higher than under previous methods. Thus, the proposed variable bias current method effectively suppresses the hysteresis phenomenon and provides improved linearity for giant magnetostrictive force sensors.