A b s t r a c tIn the review, our own studies of increased ionizing radiation effects on agricultural animals (nutria, rabbits, pigs, cattle) and small rodents of bio-indicator species after Chernobyl NPP accident are compared with published data of human populations' survey after the accidents at Chernobyl and Fukushima nuclear power plants. Similarity is noted of main targets for ionizing radiation (the cardiovascular system and kidneys) identified in humans and agricultural animals. Effects of ionizing radiation and post-traumatic syndromes are also comparable. Biomarkers of damages caused by ionizing radiation are considered. Differences in the estimates of the thyroid gland papillary carcinoma frequency after nuclear accidents at Chernobyl and Fukushima NPPs are discussed. Apparently, this inconsistency is mainly due to genogeographic factors, iodine deficit in geochemical province, and natural selection affecting number of generations in the populations from naturally radioactive provinces or under enhanced radionuclide pollution after technological accidents (T.I. Bogdanova et al., 2015; V.M. Drozd et al., 2015; M.B. Zimmermann, V. Galetti, 2015). A nonlinear dependency of biological effects of irradiation in the low dose range was analyzed with its possible mechanisms discussed (i.e. damage accumulation until the level necessary to induce DNA reparation, changes in young to old cell proportion in the populations, mitochondrial dysfunction) (E. Markievicz et al., 2015). A concept of «horizontal» and «vertical» effects of ionizing radiation on biological objects is introduced. It was shown that in different species of rodents (Microtus arvalis, Clethrionomys glareolus), and in the laboratory mice of C57BL/6, ÑÑ57W/Mv, and BALB/c lines the irradiation of bone marrow cells induced an increase of only those cytogenetic anomalies, in comparison of control groups, the increased variability of which was typical for the studied objects in a relatively clean areas. The main and, apparently, underestimated vertical consequence of raised ionizing radiation is the decrease in reproductive success of irradiated animals. Importantly, a transgenerational transmission of post-traumatic syndrome and its mechanisms, including transmission of microRNAs, the mediators of the stress response, through the spermatozoa (K. Gapp et al., 2014), changes in microbiota of parents and their children, as well as cultural inheritance are involved to explain a complexity of observed radiobiological effects and their inheritance revealed in recent years.