This paper is concerned with the parametric investigation on the structural dynamic response of moving fuel‐storage tanks with baffles. Since the structural dynamic behaviour is strongly coupled with interior liquid motion, the design of a fuel‐storage tank securing the structural stability becomes the appropriate suppression of the flow motion, which is in turn related to the baffle design. In order to numerically investigate the parametric dynamic characteristics of moving tanks, we employ the arbitrary Lagrangian–Eulerian (ALE) finite element method that is widely being used to deal with the problems with free surface, moving boundary, large deformation and interface contact. Following the theoretical and numerical formulations of fluid‐structure interaction problems, we present parametric numerical results of a cylindrical fuel‐storage tank moving with uniform vertical acceleration, with respect to the baffle number and location, and the inner‐hole diameter. Copyright © 2003 John Wiley & Sons, Ltd.