In this paper, an analytical model of a cable-stayed shallow arch is developed in order to investigate the 1 : 1 internal resonance between modes of a cable and a shallow arch. Integrodifferential equations with quadratic and cubic nonlinearities are used to model the in-plane motion of a simple cable-stayed shallow arch. Nonlinear dynamic responses of a cable-stayed shallow arch subjected to external excitations with simultaneous 1 : 1 internal resonances are investigated. Firstly, the Galerkin method is used to discretize the governing nonlinear integral-partial-differential equations. Secondly, the multiple scales method (MSM) is used to derive the modulation equations of the system under external excitation of the shallow arch. Thirdly, the equilibrium, the periodic, and the chaotic solutions of the modulation equations are also analyzed in detail. The frequency- and force-response curves are obtained by using the Newton–Raphson method in conjunction with the pseudoarclength path-following algorithm. The cascades of period-doubling bifurcations leading to chaos are obtained by applying numerical simulations. Finally, the effects of key parameters on the responses are examined, such as initial tension, inclined angle of the cable, and rise and inclined angle of shallow arch. The comprehensive numerical results and research findings will provide essential information for the safety evaluation of cable-supported structures that have widely been used in civil engineering.