Bifurcation behaviors are very important for the design of sensors. Using the sub-harmonic Melnikov method, the sub-harmonic bifurcation of single-walled carbon nanotube based mass sensor is investigated in this paper. The parametric conditions for sub-harmonic bifurcation of this system are obtained. It is presented that when the ratio of the excitation amplitude to the damping coefficient crosses a critical value, sub-harmonic bifurcations of m order (odd) can occur. The stability conditions of the bifurcation solution for the system parameters are also obtained by using the affection-angle transformation and average method. The result can provide some guidance for the design of this class of sensors.