2018
DOI: 10.2298/fil1813577f
|View full text |Cite
|
Sign up to set email alerts
|

Nonlinear sequential fractional differential equations in partially ordered spaces

Abstract: In this paper, some new partially ordered Banach spaces are introduced. Based on those new partially ordered Banach spaces and applying some fixed point theorems, we present a new approach to the theory of nonlinear sequential fractional differential equations. An example illustrating our approach is also discussed. where D α is the classical Riemann-Liouville fractional derivative of order α.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
13
0

Year Published

2019
2019
2020
2020

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 6 publications
(13 citation statements)
references
References 11 publications
0
13
0
Order By: Relevance
“…Recently, Fazli and Nieto [1] investigated the existence and uniqueness of the following interesting problem, which is a model of physical phenomena: where 0 < α ≤ 1, 0 < T < ∞. The term D 2α is for the sequence fractional derivative presented by Miller and Ross [21],…”
Section: Introductionmentioning
confidence: 99%
See 3 more Smart Citations
“…Recently, Fazli and Nieto [1] investigated the existence and uniqueness of the following interesting problem, which is a model of physical phenomena: where 0 < α ≤ 1, 0 < T < ∞. The term D 2α is for the sequence fractional derivative presented by Miller and Ross [21],…”
Section: Introductionmentioning
confidence: 99%
“…where D α is the classical Riemann-Liouville fractional derivative of order α. Before giving the weighted Cauchy type problem obtained in [1], let us recall some notions introduced in that work. Let…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…Fractional di erential equations appear naturally in a number of elds such as physics, geophysics, polymer rheology, regular variation in thermodynamics, biophysics, blood ow phenomena, aerodynamics, electrodynamics of complex medium, viscoelasticity, Bode's analysis of feedback ampli ers, capacitor theory, electrical circuits, electron-analytical chemistry, biology, control theory, tting of experimental data, nonlinear oscillation of earthquake, the uid-dynamic tra c model, etc. For more details and applications, we refer the reader to the books [1][2][3][4][5][6] and references [7][8][9][10][11][12][13][14].…”
Section: Introductionmentioning
confidence: 99%