In this paper the authors prove the existence as well as approximations of the solutions for the Bagley-Torvik equation admitting only the existence of a lower (coupled lower and upper) solution. Our results rely on an appropriate fixed point theorem in partially ordered normed linear spaces. Illustrative examples are included to demonstrate the validity and applicability of our technique.
We consider the nonlinear fractional Langevin equation involving two fractional orders with initial conditions. Using some basic properties of Prabhakar integral operator, we find an equivalent Volterra integral equation with two parameter Mittag–Leffler function in the kernel to the mentioned equation. We used the contraction mapping theorem and Weissinger’s fixed point theorem to obtain existence and uniqueness of global solution in the spaces of Lebesgue integrable functions. The new representation formula of the general solution helps us to find the fixed point problem associated with the fractional Langevin equation which its contractivity constant is independent of the friction coefficient. Two examples are discussed to illustrate the feasibility of the main theorems.
In this paper, some new partially ordered Banach spaces are introduced. Based on those new partially ordered Banach spaces and applying some fixed point theorems, we present a new approach to the theory of nonlinear sequential fractional differential equations. An example illustrating our approach is also discussed. where D α is the classical Riemann-Liouville fractional derivative of order α.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.